Characterisation of Single Wind Turbine Wakes with Static and Scanning WINTWEX-W LiDAR Data
Peer reviewed, Journal article
Published version

View/ Open
Date
2015Metadata
Show full item recordCollections
- Geophysical Institute [1312]
Original version
https://doi.org/10.1016/j.egypro.2015.11.428Abstract
With further development of LiDAR technology wake measurements by use of LiDAR became of common interest in the wind energy community. To study new measurement strategies of scanning and nacelle LiDARs, in combination with already existing measurement principles of static LiDARs, Norcowe conducted in collaboration with the Energy research Centre of the Netherlands (ECN) the Wind Turbine Wake Experiment Wieringermeer (WINTWEX-W). In this study we use data from the static Windcubes V1 to illustrate a proof of concept of wake effects at 1.75 and 3.25 rotor diameter downstream distance. After validating Windcube data against sonic anemometers from the met mast, we compare downstream velocity deficits and turbulence intensities between measurements of static and scanning WindCubes. To further characterize single wind turbine wakes and their frequencies of occurrence we analysed the results in terms of atmospheric stability. Wake measurements are of great importance to further developing tools for optimising wind farm layouts and operations.