Show simple item record

dc.contributor.authorViste, Ellen
dc.contributor.authorSorteberg, Asgeir
dc.PublishedThe Cryosphere 2015, 9(3):1147-1167eng
dc.description.abstractSnow and ice provide large amounts of meltwater to the Indus, Ganges and Brahmaputra rivers. This study combines present-day observations and reanalysis data with climate model projections to estimate the amount of snow falling over the basins today and in the last decades of the 21st century. Estimates of present-day snowfall based on a combination of temperature and precipitation from reanalysis data and observations vary by factors of 2–4. The spread is large, not just between the reanalysis and the observations but also between the different observational data sets. With the strongest anthropogenic forcing scenario (RCP8.5), the climate models project reductions in annual snowfall by 30–50% in the Indus Basin, 50–60% in the Ganges Basin and 50–70% in the Brahmaputra Basin by 2071–2100. The reduction is due to increasing temperatures, as the mean of the models show constant or increasing precipitation throughout the year in most of the region. With the strongest anthropogenic forcing scenario, the mean elevation where rain changes to snow – the rain/snow line – creeps upward by 400–900 m, in most of the region by 700–900 meters. The largest relative change in snowfall is seen in the upper westernmost sub-basins of the Brahmaputra. With the strongest forcing scenario, most of this region will have temperatures above freezing, especially in the summer. The projected reduction in annual snowfall is 65–75%. In the upper Indus, the effect of a warmer climate on snowfall is less extreme, as most of the terrain is high enough to have temperatures sufficiently far below freezing today. A 20–40% reduction in annual snowfall is projected.en_US
dc.publisherEuropean Geosciences Unionen_US
dc.rightsThis work is distributed under the Creative Commons Attribution 3.0 License.eng
dc.titleSnowfall in the Himalayas: An uncertain future from a little-known pasten_US
dc.typePeer reviewed
dc.typeJournal article
dc.rights.holderCopyright The Author(s) 2015.en_US
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Geofag: 450::Meteorologi: 453
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Geosciences: 450::Meteorology: 453
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

This work is distributed under the Creative Commons Attribution 3.0 License.
Except where otherwise noted, this item's license is described as This work is distributed under the Creative Commons Attribution 3.0 License.