• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Geophysical Institute
  • Geophysical Institute
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Geophysical Institute
  • Geophysical Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grounding Performance under Lightning Surges in High Voltage Substations

Steinsland, Vegard
Master thesis
Thumbnail
View/Open
master thesis (12.96Mb)
URI
https://hdl.handle.net/1956/18064
Date
2018-06-16
Metadata
Show full item record
Collections
  • Geophysical Institute [978]
Abstract
To achieve electromagnetic compatibility (EMC) and sufficient protection against lighting transients in the power transmission system, understanding of the grounding system transient behavior becomes crucial when deviating from international design standards and recommendations. To consider design deviations the present work is focused towards developing a method of integrating simplified grounding system models in transmission systems and perform lightning transient analysis on both parts to evaluate a particular design case. Firstly, the grounding system models for substation grounding grids, with a variety of configurations and sizes, is implemented. The characteristic transient response of the grounding system is visualized through simulations to study the sensitivity of configurations and modified soil parameters during current injections. The method of implementation allows for a detailed view and pre-processing of large data-sets from simulations. The advantages of this method is used to extract overall measured values to create a tool for EMC analysis and in addition processing different parameters and functions of the grounding system. Secondly, the grounding system model is integrated into transmission systems using a newly released interfacing application. The application allows for co-simulation between the development software of the grounding system and a specialized tool for the transmission system. The innovation of this modeling approach is given as a contribution to an international conference by submitting a paper. Finally, the integrated grounding models and transmission system are studied with two substation design cases; a short and long cable between surge arrester and transformer. The short cable case follows well-known design standards where the long cable case is a design deviation which is common in larger domestic hydropower plants. Even though the long cable case is deviating from design recommendations, the results show a less negative impact on the grounding system compared to the short cable case.
Description
Postponed access: the file will be accessible after 2019-05-31
Publisher
The University of Bergen
Copyright
Copyright the Author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit