Show simple item record

dc.contributor.authorCastellani, Marco
dc.contributor.authorHeino, Mikko Petteri
dc.contributor.authorGilbey, John
dc.contributor.authorAraki, Hitoshi
dc.contributor.authorSvåsand, Terje
dc.contributor.authorGlover, Kevin
dc.PublishedCastellani M, Heino M, Gilbey J, Araki H, Svåsand T, Glover KA. Modeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapees. Evolutionary Applications. 2018;11(6):1010-1025eng
dc.description.abstractGenetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco‐genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%–10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%–50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication‐admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication‐driven introgression among native populations.en_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.rightsAttribution CC BYeng
dc.subjectfarmed escapeeseng
dc.subjectgenetic interactionseng
dc.titleModeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapeesen_US
dc.typePeer reviewed
dc.typeJournal article
dc.rights.holderCopyright 2018 the authorsen_US
dc.source.journalEvolutionary Applications
dc.relation.projectNorges forskningsråd: 200510

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY