Vis enkel innførsel

dc.contributor.authorSporbert, Maria
dc.contributor.authorBruelheide, Helge
dc.contributor.authorSeidler, Gunnar
dc.contributor.authorKeil, Petr
dc.contributor.authorJandt, Ute
dc.contributor.authorAustrheim, Gunnar
dc.contributor.authorBiurrun, Idoia
dc.contributor.authorCampos, Juan Antonio
dc.contributor.authorČarni, Andraž
dc.contributor.authorChytrý, Milan
dc.contributor.authorCsiky, János
dc.contributor.authorDe Bie, Els
dc.contributor.authorDengler, Jürgen
dc.contributor.authorGolub, Valentin
dc.contributor.authorGrytnes, John-Arvid
dc.contributor.authorIndreica, Adrian
dc.contributor.authorJansen, Florian
dc.contributor.authorJiroušek, Martin
dc.contributor.authorLenoir, Jonathan
dc.contributor.authorLuoto, Miska
dc.contributor.authorMarcenó, Corrado
dc.contributor.authorMoeslund, Jesper Erenskjold
dc.contributor.authorPérez-Haase, Aaron
dc.contributor.authorRūsiņa, Solvita
dc.contributor.authorVandvik, Vigdis
dc.contributor.authorVassilev, Kiril
dc.contributor.authorWelk, Erik
dc.date.accessioned2020-06-12T08:11:11Z
dc.date.available2020-06-12T08:11:11Z
dc.date.issued2019
dc.PublishedSporbert, Bruelheide H, Seidler, Keil, Jandt U, Austrheim G, Biurrun I, et al. Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science. 2019;30(4):620-632eng
dc.identifier.issn1654-1103en_US
dc.identifier.issn1100-9233en_US
dc.identifier.urihttp://hdl.handle.net/1956/22563
dc.description.abstractAim: Biodiversity databases are valuable resources for understanding plant species distributions and dynamics, but they may insufficiently represent the actual geographic distribution and climatic niches of species. Here we propose and test a method to assess sampling coverage of species distribution in biodiversity databases in geographic and climatic space. Location: Europe. Methods: Using a test selection of 808,794 vegetation plots from the European Vegetation Archive (EVA ), we assessed the sampling coverage of 564 European vascular plant species across both their geographic ranges and realized climatic niches. Range maps from the Chorological Database Halle (CDH ) were used as background reference data to capture species geographic ranges and to derive species climatic niches. To quantify sampling coverage, we developed a box‐counting method, the Dynamic Match Coefficient (DMC ), which quantifies how much a set of occurrences of a given species matches with its geographic range or climatic niche. DMC is the area under the curve measuring the match between occurrence data and background reference (geographic range or climatic niche) across grids with variable resolution. High DMC values indicate good sampling coverage. We applied null models to compare observed DMC values with expectations from random distributions across species ranges and niches. Results: Comparisons with null models showed that, for most species, actual distributions within EVA are deviating from null model expectations and are more clumped than expected in both geographic and climatic space. Despite high interspecific variation, we found a positive relationship in DMC values between geographic and climatic space, but sampling coverage was in general more random across geographic space. Conclusion: Because DMC values are species‐specific and most biodiversity databases are clearly biased in terms of sampling coverage of species occurrences, we recommend using DMC values as covariates in macro‐ecological models that use species as the observation unit.en_US
dc.language.isoengeng
dc.publisherWileyen_US
dc.titleAssessing sampling coverage of species distribution in biodiversity databasesen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2020-01-10T12:08:59Z
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2019 International Association for Vegetation Scienceen_US
dc.identifier.doihttps://doi.org/10.1111/jvs.12763
dc.identifier.cristin1722047
dc.source.journalJournal of Vegetation Science


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel