Show simple item record

dc.contributor.authorEl Guernaoui, Omar
dc.contributor.authorReuder, Joachim
dc.contributor.authorEzau, Igor
dc.contributor.authorWolf, Tobias
dc.contributor.authorMaronga, Bjørn
dc.PublishedEl Guernaoui, Reuder, Ezau, Wolf, Maronga B. Scaling the decay of turbulence kinetic energy in the free-convective boundary layer. Boundary-layer Meteorology. 2019;173(1):79-97eng
dc.description.abstractWe investigate the scaling for decaying turbulence kinetic energy(TKE) in the free-convective boundary layer, from the time the surface heat flux starts decaying, until a few hours after it has vanished. We conduct a set of large-eddy simulation experiments, consider various initial convective situations, and prescribe realistic decays of the surface heat flux over a wide range of time scales. We find that the TKE time evolution is dictated by the decay- ing magnitude of the surface heat flux up to 0.7τ approximately, where τ is the prescribed duration from maximum to zero surface heat flux. During the time period starting at zero surface heat flux, we search for potential power-law scaling by examining the log–log pre- sentation of TKE as a function of time. First, we find that the description of the decay highly depends on whether the time origin is defined as the time when the surface heat flux starts decaying (traditional scaling framework), or the time when it vanishes (proposed new scaling framework). Second, when varying τ, the results plotted in the traditional scaling framework indicate variations in the power-law decay rates over several orders of magnitude. In the new scaling framework, however, we find a unique decay exponent in the order of 1, independent of the initial convective condition, and independent of τ, giving support for the proposed scaling framework.en_US
dc.rightsAttribution CC BYeng
dc.titleScaling the decay of turbulence kinetic energy in the free-convective boundary layeren_US
dc.typePeer reviewed
dc.typeJournal article
dc.rights.holderCopyright 2019 The Author(s)en_US
dc.source.journalBoundary-layer Meteorology
dc.relation.projectNotur/NorStore: NN9528K

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY