• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Geophysical Institute
  • Geophysical Institute
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Geophysical Institute
  • Geophysical Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On radar imaging of current features: 2. Mesoscale eddy and current front detection

Johannessen, Johnny A.; Kudryavtsev, Vladimir; Akimov, D.; Eldevik, Tor; Winther, Nina Gjerde; Chapron, B.
Peer reviewed, Journal article
Thumbnail
View/Open
JJohannessen3.pdf (1.720Mb)
URI
https://hdl.handle.net/1956/754
Date
2005-07-22
Metadata
Show full item record
Collections
  • Geophysical Institute [734]
Original version
https://doi.org/10.1029/2004jc002802
Abstract
The surface signatures of meandering fronts and eddies have been regularly observed and documented in synthetic aperture radar (SAR) images. Wave-current interactions, the suppression of short wind waves by natural film, and the varying wind field resulting from atmospheric boundary layer changes across an oceanic temperature front all contribute to the radar image manifestation of such mesoscale features. The corresponding imaging mechanisms are quantitatively explored using a new radar imaging model (Kudryavtsev et al., 2005) that solves the energy balance equation where wind forcing, viscous and wave breaking dissipation, wave-wave interactions, and generation of short waves by breaking waves are taken into account. High-quality and synoptic in situ observations of the surface conditions should ideally be used in this model. However, such data are rarely available. Instead, the fields of temperature and ocean current are herein derived from two distinct numerical ocean models. SAR image expressions of current fronts and eddies are then simulated based on these fields. The comparison of simulated images with European Remote Sensing (ERS) SAR and Envisat advanced SAR (ASAR) images is favorable. We consequently believe that the new radar imaging model provides promising capabilities for advancing the quantitative interpretation of current features manifested in SAR images.
Publisher
American Geophysical Union

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit