• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Biological Sciences
  • Department of Biological Sciences
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Biological Sciences
  • Department of Biological Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production performance of Atlantic salmon post-smolts in cyclic hypoxia, and following compensatory growth

Remen, Mette; Aas, Turis Synnøve; Vågseth, Tone; Torgersen, Thomas; Olsen, Rolf Erik; Imsland, Albert; Oppedal, Frode
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Accepted version (382.6Kb)
URI
http://hdl.handle.net/1956/9536
Date
2014-07
Metadata
Show full item record
Collections
  • Department of Biological Sciences [1307]
Original version
https://doi.org/10.1111/are.12082
Abstract
This study investigated the production performance of the Atlantic salmon postsmolt (Salmo salar L.) subjected to cyclic oxygen reductions (hypoxia) of varying severity. Triplicate groups (N = 955) were kept at constant 80% O2 (control) or subjected to 1 h and 45 min of hypoxia (50, 60 or 70% O2, termed 80:70, 80:60 and 80:50 groups) every 6 h at 16°C for 69 days. Feed was provided in normoxia. One third of the fish were kept further for 30 days in normoxia to study possible compensatory growth. Cyclic hypoxia did not alter the oxygen uptake rates of fish, measured in night-time. Fish subjected to 50% and 60% O2 reduced feeding by 13% and 6% compared with the controls, respectively, with corresponding reductions in specific growth rates. Feed utilization was not reduced. Compensatory growth was observed in fish from the 80:50 group, but full compensation was not achieved. The main conclusions were that feeding in normoxia does not fully alleviate negative effects of cyclic hypoxia on feeding and growth, when oxygen is reduced to 60% or below in hypoxic periods, that feed utilization is maintained, and that compensatory growth may lessen negative effects.
Publisher
John Wiley & Sons Ltd.
Journal
Aquaculture Research
Copyright
Copyright John Wiley & Sons Ltd. All rights reserved.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit