Hybrid Modeling of the N-Body Problem with Applications to Astrophysics
Abstract
Over the last years, the field of hybrid modeling, the concept of combining data-driven machine learning models and numerical solution methods to simulate a physical system, has seen an immense increase in research. This new paradigm within modeling uses its predictor capabilities from neural networks to uncover the unknown physics of the underlying system, and bridges these hidden physics with the strong mathematical foundation of numerical integrators and the governing equations of the physical system. Even though hybrid modeling is being introduced into many different fields of research, one field which so far has lacked a more detailed investigation is the field of n-body problems. This field also represents the class of non-linear systems of O.D.Es. with symplectic structure. The n-body problem has through the ages been a source of countless scientific discoveries and is still of great interest to this day. As an application, this thesis will look at the problem of n-body dynamics of planetary motion, more specifically, the simulation of the main celestial bodies of the Solar System. As the first to create a hybrid model for the n-body problem of more than 3 bodies, this thesis will show, through a series of important observations and modeling approaches, that hybrid modeling of the n-body problem can be achieved. The results will also show that the subsequent model can improve the results of a standard physics-based model, the standardized modeling approach for the n-body problem. To the best of the author’s knowledge, this thesis will also be the first to present a pure data-driven model for predicting the orbital motion of planets in our Solar System.
Publisher
The University of BergenCopyright
Copyright the Author. All rights reservedRelated items
Showing items related by title, author, creator and subject.
-
Modeling of land–surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters
Gehrke, Katrin Frieda; Sühring, Matthias; Maronga, Bjørn (Journal article; Peer reviewed, 2021)In this paper the land surface model embedded in the PALM model system is described and evaluated against in situ measurements at Cabauw, Netherlands. A total of 2 consecutive clear-sky days are simulated, and the components ... -
Large Language Models are Not Models of Natural Language: They are Corpus Models
Veres, Csaba (Journal article; Peer reviewed, 2022)Natural Language Processing (NLP) has become one of the leading application areas in the current Artificial Intelligence boom. Transfer learning has enabled large deep learning neural networks trained on the language ... -
Large scale collective modeling the final "Freeze out" stages of energetic heavy ion reactions and calculation of single particle measurables from these models
Nyiri, Agnes (Doctoral thesis, 2005-09-30)