• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-lapse techniques for surface velocity, front position and calving rate measurement of a fast-flowing tidewater glacier in Svalbard

Smith-Johnsen, Silje
Master thesis
Thumbnail
View/Open
135242982.pdf (10.52Mb)
URI
https://hdl.handle.net/1956/10422
Date
2015-05-31
Metadata
Show full item record
Collections
  • Department of Earth Science [650]
Abstract
Calving is the mechanical loss of icebergs from tidewater glaciers, responsible for 70% of the annual transfer of mass from the cryosphere to the ocean (van der Veen 1998a, 2002). To be able to correctly predict future global sea level changes it is important to understand calving processes and incorporate them into the models. The aim of this thesis is to investigate surface velocities, front positions and calving rates of a fast flowing tidewater glacier in Svalbard using an automatic oblique terrestrial time-lapse camera. The camera took pictures every 30 min from May 1st to September 16th 2014 resulting in 6600 images. The project forms part of the ConocoPhillips-Lundin Northern Area Program project CRIOS (Calving Rates and Impact on Sea Level) program whose overall aim is to develop better calving-process models. Mean velocities of Kronebreen increased from 3 m/day in May and reached a peak in mid-July of 5.3 m/day, with a velocity pattern showing increasing velocities towards the front and the centreline. Velocity results were filtered, sensitivity tested, averaged both spatially and temporally and fit well with previous results. Results suggest that velocity has a forcing from air temperature and rain events due to water inputs in the glacier system. Mean front positions showed a total retreat of 320 m, and calving rates reached a peak in early August of 11 m/day. Different parts of the front showed different styles of retreat, and therefore calving styles. Inter-meltwater-plume areas were dominated by infrequent large calving events, and plume areas were dominated by continuous calving. Mean calving rates may be atmospherically controlled, but internal dynamics, melt-water plumes and fjord temperatures may also play a role. The high resolution both spatially and temporally gained using this method makes it possible to investigate the nature of calving and the evolution of surface velocity patterns in more detail than satellite derived results. These data are required for improving the understanding of calving dynamics to develop sea level rise models.
Publisher
The University of Bergen
Copyright
Copyright the Author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit