Show simple item record

dc.contributor.authorKeilegavlen, Eirikeng
dc.contributor.authorSkogestad, Jan Oleeng
dc.contributor.authorNordbotten, Jan Martineng
dc.date.accessioned2015-09-08T09:33:21Z
dc.date.available2015-09-08T09:33:21Z
dc.date.issued2014
dc.PublishedIn: Eugenio Oñate, Xavier Oliver and Antonio Huerta (Eds.). Proceedings of 11th World Congress of Computational Mechanics. 2014: 4802-4809eng
dc.identifier.urihttps://hdl.handle.net/1956/10432
dc.description.abstractWe consider domain decomposition techniques for a non-linear elasticity problem. Our main focus is on non-linear preconditioning, realized in the framework of additive Schwarz preconditioned inexact Newton (ASPIN) methods. The standard 1-level ASPIN method is extended to a 2-level method by adding a non-linear coarse solver. Numerical experiments show that the coarse component is necessary for scalability in terms of linear iterations inside the Newton loop. Moreover, for problems that are dominated by nonlinearities that are not localized in space the non-linear coarse iterations are crucial for achieving computational efficiency.en_US
dc.language.isoengeng
dc.publisherInternational Centre for Numerical Methods in Engineeringen_US
dc.relation.ispartof<a href="http://hdl.handle.net/1956/10433" target="_blank">Solution strategies for nonlinear conservation laws</a>en_US
dc.subjectNon-linear preconditioningeng
dc.subjectASPINeng
dc.subjectnon-linear elasticityeng
dc.subjectDomain decompositioneng
dc.subjectNewton methodseng
dc.titleDomain decomposition preconditioning for non-linear elasticity problemsen_US
dc.typeConference object
dc.typePeer reviewed
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright the Author. All rights reserveden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record