Vis enkel innførsel

dc.contributor.authorFomin, Fedor
dc.contributor.authorGeevarghese, Philip
dc.contributor.authorVillanger, Yngve
dc.date.accessioned2016-05-30T12:11:27Z
dc.date.available2016-05-30T12:11:27Z
dc.date.issued2011
dc.PublishedLeibniz International Proceedings in Informatics 2011, 13:164-175eng
dc.identifier.urihttps://hdl.handle.net/1956/12038
dc.description.abstractThe Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most k edges. The problem has important applications in numerical algebra, in particular in sparse matrix computations. We develop kernelization algorithms for the problem on several classes of sparse graphs. We obtain linear kernels on planar graphs, and kernels of size O(k^{3/2}) in graphs excluding some fixed graph as a minor and in graphs of bounded degeneracy. As a byproduct of our results, we obtain approximation algorithms with approximation ratios O(log{k}) on planar graphs and O(sqrt{k} log{k}) on H-minor-free graphs. These results significantly improve the previously known kernelization and approximation results for Minimum Fill-in on sparse graphs.en_US
dc.language.isoengeng
dc.publisherDagstuhl Publishingen_US
dc.rightsAttribution CC BY-NC-ND 3.0eng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/eng
dc.subjectMinimum Fill-Ineng
dc.subjectApproximationeng
dc.subjectKernelizationeng
dc.subjectSparse graphseng
dc.titleMinimum Fill-in of Sparse Graphs: Kernelization and Approximationen_US
dc.typeConference object
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2016-04-07T06:45:51Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright Fedor V. Fomin, Geevarghese Philip, and Yngve Villangeren_US
dc.identifier.doihttps://doi.org/10.4230/lipics.fsttcs.2011.164
dc.identifier.cristin886393


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY-NC-ND 3.0
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY-NC-ND 3.0