Show simple item record

dc.contributor.authorMinakov, Alexander
dc.contributor.authorKeers, Henk
dc.contributor.authorKolyukhin, Dmitriy
dc.contributor.authorTengesdal, Hans Christian
dc.date.accessioned2019-04-04T13:35:19Z
dc.date.available2019-04-04T13:35:19Z
dc.date.issued2017
dc.PublishedMinakov A, Keers H, Kolyukhin D, Tengesdal. Acoustic waveform inversion for ocean turbulence. Journal of Physical Oceanography. 2017;47(6):1473-1491eng
dc.identifier.issn0022-3670en_US
dc.identifier.issn1520-0485en_US
dc.identifier.urihttps://hdl.handle.net/1956/19282
dc.description.abstractThe seismic oceanography method is based on extracting and stacking the low-frequency acoustic energy scattered by the ocean heterogeneity. However, a good understanding on how this acoustic wavefield is affected by physical processes in the ocean is still lacking. In this work an acoustic waveform modeling and inversion method is developed and applied to both synthetic and real data. In the synthetic example, the temperature field is simulated as a homogeneous Gaussian isotropic random field with the Kolmogorov–Obukhov spectrum superimposed on a background stratified ocean structure. The presented full waveform inversion method is based on the ray-Born approximation. The synthetic seismograms computed using the ray-Born scattering method closely match the seismograms produced with a more computationally expensive finite-difference method. The efficient solution to the inverse problem is provided by the multiscale nonlinear inversion approach that is specifically stable with respect to noise. Full waveform inversion tests are performed using both the stationary and time-dependent sound speed models. These tests show that the method provides a reliable reconstruction of both the spatial sound speed variation and the theoretical spectrum due to fully developed turbulence. Finally, the inversion approach is applied to real seismic reflection data to determine the heterogeneous sound speed structure at the west Barents Sea continental margin in the northeast Atlantic. The obtained model illustrates in more detail the processes of diapycnal mixing near the continental slope.en_US
dc.language.isoengeng
dc.publisherAmerican Meteorological Societyen_US
dc.titleAcoustic waveform inversion for ocean turbulenceen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2018-02-10T14:27:24Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2017 American Meteorological Societyen_US
dc.identifier.doihttps://doi.org/10.1175/jpo-d-16-0236.1
dc.identifier.cristin1499121
dc.source.journalJournal of Physical Oceanography
dc.relation.projectNorges forskningsråd: 223272


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record