Show simple item record

dc.contributor.authorHonigs, Katrina
dc.contributor.authorLombardi, Luigi
dc.contributor.authorTirabassi, Sofia
dc.date.accessioned2019-11-13T12:09:01Z
dc.date.available2019-11-13T12:09:01Z
dc.date.issued2019
dc.PublishedHonigs, Lombardi L, Tirabassi S. Derived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristic. Mathematische Zeitschrift. 2019eng
dc.identifier.issn1432-1823en_US
dc.identifier.issn0025-5874en_US
dc.identifier.urihttps://hdl.handle.net/1956/20998
dc.description.abstractWe prove that any Fourier–Mukai partner of an abelian surface over an algebraically closed field of positive characteristic is isomorphic to a moduli space of Gieseker-stable sheaves. We apply this fact to show that the set of Fourier–Mukai partners of a canonical cover of a hyperelliptic or Enriques surface over an algebraically closed field of characteristic greater than three is trivial. These results extend earlier results of Bridgeland–Maciocia and Sosna to positive characteristic.en_US
dc.language.isoengeng
dc.publisherSpringeren_US
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/eng
dc.titleDerived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristicen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2019-09-13T09:37:35Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2019 The Authorsen_US
dc.identifier.doihttps://doi.org/10.1007/s00209-019-02362-1
dc.identifier.cristin1724429
dc.source.journalMathematische Zeitschrift


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY