• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

Bolte, Fabian; Bruckner, Stefan
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Accepted version (5.909Mb)
URI
https://hdl.handle.net/1956/21799
Date
2020
Metadata
Show full item record
Collections
  • Department of Informatics [536]
Original version
Bolte, Bruckner. Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution. IEEE Transactions on Visualization and Computer Graphics. 2020   https://doi.org/10.1109/tvcg.2019.2963651
Abstract
Developing an algorithm for a visualization prototype often involves the direct comparison of different development stages and design decisions, and even minor modifications may dramatically affect the results. While existing development tools provide visualizations for gaining general insight into performance and structural aspects of the source code, they neglect the central importance of result images unique to graphical algorithms. In this paper, we present a novel approach that enables visualization programmers to simultaneously explore the evolution of their algorithm during the development phase together with its corresponding visual outcomes by providing an automatically updating meta visualization. Our interactive system allows for the direct comparison of all development states on both the visual and the source code level, by providing easy to use navigation and comparison tools. The on-the-fly construction of difference images, source code differences, and a visual representation of the source code structure further enhance the user's insight into the states' interconnected changes over time. Our solution is accessible via a web-based interface that provides GPU-accelerated live execution of C++ and GLSL code, as well as supporting a domain-specific programming language for scientific visualization.
Publisher
IEEE
Journal
IEEE Transactions on Visualization and Computer Graphics
Copyright
Copyright 2019 IEEE

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit