Measurement of the inclusive isolated photon production cross section in p p collisions at √s=7 TeV
Acharya, Shreyasi; Adamová, Dagmar; Adhya, Souvik Priyam; Adler, Alexander; Adolfsson, Jonatan; Aggarwal, Madan M.; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Nikita; Ahammed, Zubayer; Alme, Johan; Altenkaemper, Lucas; Djuvsland, Øystein; Ersdal, Magnus Rentsch; Fionda, Fiorella Maria Celeste; Grøttvik, Ola Slettevoll; Lofnes, Ingrid Mckibben; Nystrand, Joakim; Rehman, Attiq ur; Røhrich, Dieter; Tambave, Ganesh Jagannath; Ullaland, Kjetil; Wagner, Boris; Yang, Shiming; Yuan, Shiming; Zhou, Zhuo; Arsene, Ionut Cristian; Bätzing, Paul Christoph; Dordic, Olja; Lardeux, Antoine Xavier; Lindal, Svein; Mahmood, Sohail Musa; Malik, Qasim Waheed; Richter, Matthias; Røed, Ketil; Skaali, Toralf Bernhard; Tveter, Trine Spedstad; Wikne, Jon Christopher; Zhao, Chengxin; Helstrup, Håvard; Hetland, Kristin Fanebust; Kileng, Bjarte; Nesbø, Simon Voigt; Storetvedt, Maksim Melnik; Langøy, Rune; Lien, Jørgen André; Ahmad, Shafiq F.; Ahn, Sang Un; Akindinov, Alexander; Al-Turany, Mohammed; ALICE, Collaboration
Peer reviewed, Journal article
Published version
View/ Open
Date
2019-11-07Metadata
Show full item recordCollections
Original version
https://doi.org/10.1140/epjc/s10052-019-7389-9Abstract
The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at a centre-of-momentum energy of s√= 7 TeV. The measurement is performed with the electromagnetic calorimeter EMCal and the central tracking detectors, covering a range of |η|<0.27 in pseudorapidity and a transverse momentum range of 10<pγT<60 GeV/c. The result extends the pT coverage of previously published results of the ATLAS and CMS experiments at the same collision energy to smaller pT. The measurement is compared to next-to-leading order perturbative QCD calculations and to the results from the ATLAS and CMS experiments. All measurements and theory predictions are in agreement with each other.