On the applicability of a renormalized Born series for seismic wave modelling in strongly scattering media
Peer reviewed, Journal article
Published version

View/ Open
Date
2020Metadata
Show full item recordCollections
- Department of Earth Science [1143]
Original version
https://doi.org/10.1093/jge/gxz105Abstract
Scattering theory is the basis for various seismic modeling and inversion methods. Conventionally, the Born series suffers from an assumption of a weak scattering and may face a convergence problem. We present an application of a modified Born series, referred to as the convergent Born series (CBS), to frequency-domain seismic wave modeling. The renormalization interpretation of the CBS from the renormalization group prospective is described. Further, we present comparisons of frequency-domain wavefields using the reference full integral equation method with that using the convergent Born series, proving that both of the convergent Born series can converge absolutely in strongly scattering media. Another attractive feature is that the Fast Fourier Transform is employed for efficient implementations of matrix–vector multiplication, which is practical for large-scale seismic problems. By comparing it with the full integral equation method, we have verified that the CBS can provide reliable and accurate results in strongly scattering media.