Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum
Aad, Georges; Abbott, Brad; Abbott, Dale C.; Abdinov, Ovsat Bahram oglu; Abed Abud, Adam; Abeling, Kira; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; AbouZeid, Hass; Abraham, Nadine L.; Bjørke, Kristian; Bugge, Magnar Kopangen; Cameron, David Gordon; Catmore, James Richard; Feigl, Simon; Garonne, Vincent; Gramstad, Eirik; Hellesund, Simen; Morisbak, Vanja; Oppen, Henrik; Ould-Saada, Farid; Pedersen, Maiken; Read, Alexander Lincoln; Rye, Eli Bæverfjord; Røhne, Ole Myren; Sandaker, Heidi; Vadla, Knut Oddvar Høie; Buanes, Trygve; Djuvsland, Julia Isabell; Eigen, Gerald; Fomin, Nikolai; Lee, Graham Richard; Lipniacka, Anna; Martin dit Latour, Bertrand; Mæland, Steffen; Stugu, Bjarne; Træet, Are Sivertsen; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby S.; Achkar, Baida; Adachi, Shunsuke; Adam, Lennart; Adam-Bourdarios, Claire; Adamczyk, Leszek; Adamek, Lukas; Adelman, Jareed; Adersberger, Michael; Adigüzel, Aytül; ATLAS, Collaboration
Peer reviewed, Journal article
Published version
View/ Open
Date
2019Metadata
Show full item recordCollections
Original version
https://doi.org/10.1007/jhep12(2019)060Abstract
The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark (b~1) using 139 fb−1 of proton-proton data collected at s√ = 13 TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a b-quark and the second-lightest neutralino, b~1→b+χ~02. Each χ~02 is assumed to subsequently decay with 100% branching ratio into a Higgs boson (h) like the one in the Standard Model and the lightest neutralino: χ~02→h+χ~01. The χ~01 is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the χ~02 and χ~01 of 130 GeV. The final states considered contain no charged leptons, three or more b-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded.