Production of muons from heavy-flavour hadron decays in pp collisions at √s = 5.02 TeV
Acharya, Shreyasi; Adamová, Dagmar; Adhya, Souvik Priyam; Adler, Alexander; Adolfsson, Jonatan; Aggarwal, Madan M.; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Alme, Johan; Altenkaemper, Lucas; Djuvsland, Øystein; Ersdal, Magnus Rentsch; Fionda, Fiorella Maria Celeste; Grøttvik, Ola Slettevoll; Lofnes, Ingrid Mckibben; Nystrand, Joakim; Rehman, Attiq ur; Røhrich, Dieter; Tambave, Ganesh Jagannath; Ullaland, Kjetil; Wagner, Boris; Yang, Shiming; Yuan, Shiming; Zhou, Zhuo; Arsene, Ionut Cristian; Bätzing, Paul Christoph; Dordic, Olja; Lardeux, Antoine Xavier; Lindal, Svein; Mahmood, Sohail Musa; Malik, Qasim Waheed; Richter, Matthias; Røed, Ketil; Skaali, Toralf Bernhard; Tveter, Trine Spedstad; Wikne, Jon Christopher; Zhao, Chengxin; Helstrup, Håvard; Hetland, Kristin Fanebust; Kileng, Bjarte; Nesbø, Simon Voigt; Storetvedt, Maksim Melnik; Langøy, Rune; Lien, Jørgen André; Ahmad, Shafiq F.; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; ALICE, Collaboration
Peer reviewed, Journal article
Published version

View/ Open
Date
2019Metadata
Show full item recordCollections
Original version
https://doi.org/10.1007/jhep09(2019)008Abstract
Production cross sections of muons from semi-leptonic decays of charm and beauty hadrons were measured at forward rapidity (2.5 < y < 4) in proton-proton (pp) collisions at a centre-of-mass energy s√ = 5.02 TeV with the ALICE detector at the CERN LHC. The results were obtained in an extended transverse momentum interval, 2 < pT< 20 GeV/c, and with an improved precision compared to previous measurements performed in the same rapidity interval at centre-of-mass energies s√ = 2.76 and 7 TeV. The pT- and y-differential production cross sections as well as the pT-differential production cross section ratios between different centre-of-mass energies and different rapidity intervals are described, within experimental and theoretical uncertainties, by predictions based on perturbative QCD.