• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the relative importance of global and squirt flow in cracked porous media

Ali, Aamir; Jakobsen, Morten
Submitted version
Thumbnail
View/Open
On the relative importance of global and squirt flow.pdf (568.2Kb)
URI
https://hdl.handle.net/1956/5031
Date
2011
Metadata
Show full item record
Collections
  • Department of Earth Science [665]
Abstract
A unified theory of global and squirt flow in cracked porous media was developed several years ago on the basis of a combination of the dynamic T-matrix approach to rock physics. The theory has been successfully used to model ultrasonic velocity and attenuation anisotropy measurements in real rocks under pressure. At the same time, it was recently pointed out that this theory, which contain an established theory of interconnected cracks as a special case contains an error related to fluid mass conservation. The error was recently corrected, and this paper represents an attempt to perform a systematic study of the implications of unified theory for the relative importance of global and squirt flow in cracked porous media characterized by different microstructures and fluid mobilities. Our numerical results suggest that squirt flow dominates over global flow and global flow appears to be more important at higher frequencies for more realistic models of microstructure. The attenuation peak of squirt flow move towards lower frequencies with the increasing fluid viscosity i.e. changing saturating fluid from water to oil, while the global flow attenuation peak move towards higher frequencies with increasing fluid viscosity. A previous observation of negative velocity dispersion in unified theory still remain, even if we use the correct effective wave number, when dealing with the phenomenon of wave-induced fluid flow in models of cracked porous media where global flow effects dominates. The attenuation peak of the global flow obtained using the correct wave number is always shifted to the left as compared to the approximate solution. At seismic frequencies global flow effects are not so important and needs very high permeability and low viscosity to have an effect.
Publisher
The authors
Copyright
Copyright the authors. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit