• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • Vis innførsel
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling error distribution for the ensemble Kalman filter update step

Kovalenko, Andrey; Mannseth, Trond; Nævdal, Geir
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
Published version (462.0Kb)
Permanent lenke
https://hdl.handle.net/1956/5744
Utgivelsesdato
2011-07-06
Metadata
Vis full innførsel
Samlinger
  • Department of Mathematics [650]
Originalversjon
https://doi.org/10.1007/s10596-011-9238-2
Sammendrag
In recent years, data assimilation techniques have been applied to an increasingly wider specter of problems. Monte Carlo variants of the Kalman filter, in particular, the ensemble Kalman filter (EnKF), have gained significant popularity. EnKF is used for a wide variety of applications, among them for updating reservoir simulation models. EnKF is a Monte Carlo method, and its reliability depends on the actual size of the sample. In applications, a moderately sized sample (40–100 members) is used for computational convenience. Problems due to the resulting Monte Carlo effects require a more thorough analysis of the EnKF. Earlier we presented a method for the assessment of the error emerging at the EnKF update step (Kovalenko et al., SIAM J Matrix Anal Appl, in press). A particular energy norm of the EnKF error after a single update step was studied. The energy norm used to assess the error is hard to interpret. In this paper, we derive the distribution of the Euclidean norm of the sampling error under the same assumptions as before, namely normality of the forecast distribution and negligibility of the observation error. The distribution depends on the ensemble size, the number and spatial arrangement of the observations, and the prior covariance. The distribution is used to study the error propagation in a single update step on several synthetic examples. The examples illustrate the changes in reliability of the EnKF, when the parameters governing the error distribution vary.
Utgiver
Springer
Opphavsrett
Copyright the Author(s) 2011

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit