Show simple item record

dc.contributor.authorJordanger, Lars Arneeng
dc.date.accessioned2013-07-08T11:25:00Z
dc.date.available2013-07-08T11:25:00Z
dc.date.issued2013-06-03eng
dc.date.submitted2013-06-03eng
dc.identifier.urihttps://hdl.handle.net/1956/6778
dc.description.abstractThis thesis will consider the performance of the cross-validation copula information criterion, xv-CIC, in the realm of finite samples. The theory leading to the xv-CIC will be outlined, and an analysis will be conducted on an assorted collection of bivariate one-parameter copula models. The restriction to the bivariate case is not a grave one, since more complex d-variate samples can be broken down into a study of conditioned bivariate samples, by the methodology of regular vine-copulas, the pair copula construction and stepwise-semiparametric estimation of parameters. As a by-product of our analysis, we can give an advice with regard to the selection of model selection method in the semiparametric realm.en_US
dc.format.extent1393514 byteseng
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherThe University of Bergenen_US
dc.subjectmodel selectioneng
dc.subjectcopulaeng
dc.subjectAICeng
dc.subjectcopula information criterioneng
dc.titleSemiparametric model selection for copulasen_US
dc.typeMaster thesis
dc.rights.holderCopyright the author. All rights reserveden_US
dc.description.degreeMaster i Statistikken_US
dc.description.localcodeMAMN-STAT
dc.description.localcodeSTAT399
dc.subject.nus753299eng
fs.subjectcodeSTAT399


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record