• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving Parallel Sparse Matrix-vector Multiplication

Tessem, Torbjørn Johnsen
Master thesis
Thumbnail
View/Open
116259352.pdf (720.0Kb)
URI
https://hdl.handle.net/1956/8024
Date
2013-12-19
Metadata
Show full item record
Collections
  • Department of Informatics [541]
Abstract
Sparse Matrix-vector Multiplication (SMvM) is a mathematical technique encountered in many programs and computations and is often heavily used. Solving SMvM in parallel allows for bigger instances to be solved, and problems to be solved faster. Several strategies have been tried to improve parallel SMvM. Work has been done with regard to improved cache use, better load balance and reduced conflicts. The aim of the work conducted in this thesis is to develop new ideas and algorithms to speed-up parallel SMvM on a shared memory computer. We use a method inspired by the min-makespan problem to distribute elements more evenly. We introduce a hybrid algorithm that gives better cache efficiency, and we work with colouring algorithms to avoid write conflicts.
Publisher
The University of Bergen
Copyright
Copyright the author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit