• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • Vis innførsel
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal ternary cyclic codes with minimum distance four and five

Li, Nian; Li, Chunlei; Helleseth, Tor; Ding, Cunsheng; Tang, Xiaohu
Journal article
Submitted version
Thumbnail
Åpne
Submitted version (276.9Kb)
Permanent lenke
https://hdl.handle.net/1956/8429
Utgivelsesdato
2014-11
Metadata
Vis full innførsel
Samlinger
  • Department of Informatics [746]
Originalversjon
https://doi.org/10.1016/j.ffa.2014.06.001.
Sammendrag
Cyclic codes are an important subclass of linear codes and have wide applications in data storage systems, communication systems and consumer electronics. In this paper, two families of optimal ternary cyclic codes are presented. The first family of cyclic codes has parameters [3m−1,3m−1−2m,4] and contains a class of conjectured cyclic codes and several new classes of optimal cyclic codes. The second family of cyclic codes has parameters [3m−1,3m−2−2m,5] and contains a number of classes of cyclic codes that are obtained from perfect nonlinear functions over F3m, where m > 1 and is a positive integer.
Utgiver
Elsevier
Tidsskrift
Finite Fields and Their Applications
Opphavsrett
Copyright 2014 Elsevier Inc. All rights reserved

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit