• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Science and Technology
  • Department of Earth Science
  • Department of Earth Science
  • View Item
  •   Home
  • Faculty of Science and Technology
  • Department of Earth Science
  • Department of Earth Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulating the climatic response of Hardangerjøkulen in southern Norway since the Little Ice Age

Åkesson, Henning Martin
Master thesis
Thumbnail
View/Open
121373949.pdf (17.91Mb)
URI
https://hdl.handle.net/1956/8543
Date
2014-05-24
Metadata
Show full item record
Collections
  • Department of Earth Science [1197]
Abstract
Glacier and ice cap volume changes currently amount to half of the total contribution from the cryosphere to sea-level rise. Ice caps and their outlet glaciers are dynamically different from the Greenland and Antarctic ice sheets, and respond considerably faster to climate change. We use a shallow-ice version of the Ice Sheet System Model (ISSM) to model the dynamics and evolution of the maritime-continental Hardangerjøkulen ice cap We force the ice flow model with a dynamically calibrated mass balance history based on moraine evidence from the Little Ice Age maximum in 1750, as well as later outlet glacier front positions from moraines and direct measurements. Glaciological mass balance measurements force the model from the 1960s onwards, and we validate the model using a surface digital elevation model from 1995 and aerial photographs. The model successfully reproduces most of the LIA extent of the ice cap. Outlet glaciers retreat too far in the model for the early 1900s, while observed ice extent after 1960 is accurately represented. This coincides with the period where direct mass balance data is used as forcing, indicating its key role. A comparison with a digital elevation model from 1995 reveals a very good agreement of surface topography, except for a too thick eastern ice cap. We find a non-linear relationship between mass balance perturbations and ice volume response, where Hardangerjøkulen is more sensitive to negative than positive mass balance changes. We discuss these findings in light of reconstructed past changes and future predictions.
Publisher
The University of Bergen
Copyright
Copyright the author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit