• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weak solutions and convergent numerical schemes of Brenner-Navier-Stokes equations

Svärd, Magnus
Research report
Submitted version
Thumbnail
View/Open
Weak solutions and convergent numerical schemes_Svard_2015 .pdf (418.3Kb)
URI
https://hdl.handle.net/1956/9230
Date
2015-01-20
Metadata
Show full item record
Collections
  • Department of Mathematics [637]
Abstract
Lately, there has been some interest in modifications of the compressible Navier-Stokes equations to include diffusion of mass. In this paper, we investigate possible ways to add mass diffusion to the 1-D Navier-Stokes equations without violating the basic entropy inequality. As a result, we recover a general form of Brenner's modification of the Navier-Stokes equations. We consider Brenner's system along with another modification where the viscous terms collapse to a Laplacian diffusion. For each of the two modifications, we derive a priori estimates for the PDE, suffciently strong to admit a weak solution; we propose a numerical scheme and demonstrate that it satisfies the same a priori estimates. For both modifications, we then demonstrate that the numerical schemes generate solutions that converge to a weak solution (up to a subsequence) as the grid is refined.
Copyright
Copyright the author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit