Show simple item record

dc.contributor.authorOlsen, Linn Merethe Brekke
dc.contributor.authorKnutsen, Heidi
dc.contributor.authorMahat, Sabnam
dc.contributor.authorWade, Emma Jane
dc.contributor.authorArp, Hans Peter
dc.PublishedMarine Environmental Research. 2020, 161:105080 1-11.en_US
dc.description.abstractIdentifying and quantifying microplastic in marine samples can be facilitated by removing natural organic matter (NOM). Cellulosic material, like chitin, however, are a type of NOM that is resistant to chemical digestion, and difficult to eliminate from samples. To address this a two-step digestion method was developed to remove or reduce cellulosic materials in diverse marine media to assist microplastic quantification. This method was applied to reference microplastics, reference cellulosic materials, and diverse marine samples from the Inner Oslofjord Norway. This included plankton, seabed sediments near a water treatment plant and driftline sand. The method was developed and tested for plastic particles >45 μm. The first-step was to pre-dissolve cellulosic materials using a mixture of urea:thiourea:NaOH. This was followed by an oxidative digestion using H2O2 and NaOH. Most reference plastics were unaffected, except minor effects for PET and nylon. After sufficient repetitions, cellulosic materials in both reference and marine samples were largely removed. This method was compared to other digestion methods used for microplastic quantification, including single-step oxidation, alkaline treatment, acid treatment and enzymatic treatment. The results indicate that the pre-dissolution step greatly facilitates NOM and cellulose digestion for the purpose of microplastic quantification in marine samples.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleFacilitating microplastic quantification through the introduction of a cellulose dissolution step prior to oxidation: Proof-of-concept and demonstration using diverse samples from the Inner Oslofjord, Norwayen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.rights.holderCopyright The authorsen_US
dc.source.journalMarine Environmental Researchen_US
dc.relation.projectNorges forskningsråd: 231736en_US
dc.relation.projectNorges forskningsråd: 257433en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal