Vis enkel innførsel

dc.contributor.authorYilmaz, Ozlem
dc.contributor.authorChauvigné, Francois
dc.contributor.authorFerré, Alba
dc.contributor.authorNilsen, Frank
dc.contributor.authorFjelldal, Per Gunnar
dc.contributor.authorCerdà, Joan
dc.contributor.authorFinn, Roderick Nigel
dc.date.accessioned2021-03-03T14:29:31Z
dc.date.available2021-03-03T14:29:31Z
dc.date.created2020-07-27T11:30:23Z
dc.date.issued2020
dc.PublishedCells. 2020, 9:1663 (7), 1-29.
dc.identifier.issn2073-4409
dc.identifier.urihttps://hdl.handle.net/11250/2731497
dc.description.abstractTransmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleUnravelling the Complex Duplication History of Deuterostome Glycerol Transportersen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 by the authors.en_US
dc.source.articlenumber1663en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3390/cells9071663
dc.identifier.cristin1820585
dc.source.journalCellsen_US
dc.source.409:1663
dc.source.147
dc.identifier.citationCells. 2020, 9 (7), 1663en_US
dc.source.volume9en_US
dc.source.issue7en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal