Experimental design for parameter estimation in steady-state linear models of metabolic networks
Journal article, Peer reviewed
Published version

Åpne
Permanent lenke
https://hdl.handle.net/11250/2754709Utgivelsesdato
2020-01Metadata
Vis full innførselSamlinger
- Department of Mathematics [985]
- Registrations from Cristin [11244]
Sammendrag
Metabolic networks are typically large, containing many metabolites and reactions. Dynamical models that aim to simulate such networks will consist of a large number of ordinary differential equations, with many kinetic parameters that must be estimated from experimental data. We assume these data to be metabolomics measurements made under steady-state conditions for different input fluxes. Assuming linear kinetics, analytical criteria for parameter identifiability are provided. For normally distributed error terms, we also calculate the Fisher information matrix analytically to be used in the D-optimality criterion. A test network illustrates the developed tool chain for finding an optimal experimental design. The first stage is to verify global or pointwise parameter identifiability, the second stage to find optimal input fluxes, and finally remove redundant measurements.