• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • University of Bergen Library
  • Registrations from Cristin
  • View Item
  •   Home
  • University of Bergen Library
  • Registrations from Cristin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Respiration rates of herring larvae at different salinities and effects of previous environmental history

Berg, Florian; Andersson, Leif; Folkvord, Arild
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Accepted Version (687.8Kb)
URI
https://hdl.handle.net/11250/2755357
Date
2020
Metadata
Show full item record
Collections
  • Department of Biological Sciences [1816]
  • Registrations from Cristin [5446]
Original version
Marine Ecology Progress Series. 2020, 650:141-152   10.3354/meps13318
Abstract
Metabolic rates of early life history stages of marine fishes show considerable inter-individual differences and are highly influenced by extrinsic factors like temperature or food availability. Measuring oxygen uptake rates is a proxy for estimating metabolic rates. Still, the relationship between respiration rates and ambient or previous salinity conditions as well as parental and developmental acclimation to changes in salinity is largely unexplored. In the present study, we conducted experiments to investigate salinity effects on the routine metabolic rates (RMR) of euryhaline Atlantic herring (Clupea harengus) larvae at three levels of salinity: low (6 psu), intermediate (16 psu) and high (35 psu) reflecting ecological relevant conditions for its populations in the Atlantic and Baltic Sea. The larvae originated from different genetic backgrounds and salinity adaptations to account for cross-generation effects on metabolic rates. Closed respirometry carried out over 24 h on individual fish larvae generally confirmed near isometric respiration rates at all salinity regimes, with rates being 15.4% higher at 6 psu and 7.5% higher at 35 psu compared to 16 psu conditions. However, transgenerational acclimation to different salinity regimes of parents had no effect on the salinity specific metabolic rates of their offspring. Our study demonstrates the ability of herring to cope with a wide range of salinity conditions, irrespective of parental environmental history and genetic origin. This phenotypic plasticity is considered to be one of the main contributing factors to the success of herring as a widely distributed fish species in the North Atlantic and adjacent waters.
Publisher
Inter-Research
Journal
Marine Ecology Progress Series
Copyright
Copyright 2020 Inter-Research

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit