• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • University of Bergen Library
  • Registrations from Cristin
  • View Item
  •   Home
  • University of Bergen Library
  • Registrations from Cristin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics of anomalous stratospheric eddy heat flux events in an idealized model

Dunn-Sigouin, Etienne; Shaw, Tiffany
Journal article, Peer reviewed
Published version
Thumbnail
View/Open
PDF (2.856Mb)
URI
https://hdl.handle.net/11250/2759787
Date
2020-05-28
Metadata
Show full item record
Collections
  • Geophysical Institute [1362]
  • Registrations from Cristin [12990]
Original version
Journal of the Atmospheric Sciences. 2020, 77 (6), 2187-2202   10.1175/JAS-D-19-0231.1
Abstract
Extreme stratospheric eddy and sudden stratospheric warming (SSW) events both involve anomalous stratospheric eddy heat flux. The cause of the anomaly has been hypothesized to be due to tropospheric or stratospheric dynamics. Here, ensemble spectral nudging experiments in a dry dynamical-core model are used to quantify the role of the troposphere versus the stratosphere. The experiments focus on the wavenumber-1 heat flux since it dominates the anomalous stratospheric eddy heat flux during both events. Nudging the stratospheric zonal-mean flow does not account for the anomalous stratospheric wave-1 heat flux. Nudging either tropospheric wave-1 or higher-order wavenumbers (k ≥ 2) accounts for a large fraction of the anomalous stratospheric wave-1 heat flux. Mechanism denial experiments, whereby tropospheric eddies (wave 1 or k ≥ 2) are nudged and the zonal-mean flow is fixed to climatology, suggest the climatological stratospheric zonal-mean flow is sufficient to account for the anomalous stratospheric wave-1 heat flux and wave–wave interaction plays a role in generating the anomalous tropospheric wave-1 source. Taken together, the experiments suggest the troposphere dominates the anomalous stratospheric eddy heat flux during extreme stratospheric eddy and SSW events while the stratospheric zonal-mean flow plays secondary role.
Publisher
American Meteorological Society
Journal
Journal of the Atmospheric Sciences
Copyright
Copyright 2020 American Meteorological Society

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit