Show simple item record

dc.contributor.authorBui, Hai Hoang
dc.contributor.authorSpengler, Thomas
dc.description.abstractThe sea surface temperature (SST) distribution can modulate the development of extratropical cyclones through sensible and latent heat fluxes. However, the direct and indirect effects of these surface fluxes, and thus the SST, are still not well understood. This study tackles this problem using idealized channel simulations of moist baroclinic development under the influence of surface fluxes. The model is initialized with a zonal wind field resembling the midlatitude jet and a different SST distribution for each experiment, where the absolute SST, the SST gradient, and the meridional position of the SST front are varied. The surface latent heat flux associated with the absolute SST plays a key role in enhancing the moist baroclinic development, while the sensible heat fluxes associated with the SST gradient play a minor role that can be detrimental for the development of the cyclone. The additional moisture provided by the latent heat fluxes originates from about 1000 km ahead of the cyclone a day prior to the time of the most rapid deepening. When the SST in this region is higher than 16°C, the additional latent heat is conducive for explosive cyclone development. For SSTs above 20°C, the cyclones feature characteristics of hybrid cyclones with latent heat release close to their core, maintaining their intensity for a longer period due to continuous and extensive moisture supply from the surface. A high absolute SST with a weak SST gradient, however, can lead to a delay of the deepening stage, because of unorganized convection at early stages reducing environmental baroclinicity.en_US
dc.publisherAmerican Meteorological Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleOn the Influence of Sea Surface Temperature distributions on the Development of Extratropical Cyclonesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.rights.holderCopyright 2021 American Meteorological Societyen_US
dc.source.journalJournal of the Atmospheric Sciencesen_US
dc.relation.projectNorges forskningsråd: 262220en_US
dc.subject.nsiVDP::Meteorologi: 453en_US
dc.subject.nsiVDP::Meteorology: 453en_US
dc.identifier.citationJournal of the Atmospheric Sciences. 2021, 78(4), 1173–1188en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal