Vis enkel innførsel

dc.contributor.authorZhao, Rui
dc.contributor.authorMogollon, Jose M
dc.contributor.authorAbby, Sophie
dc.contributor.authorSchleper, Christa
dc.contributor.authorBiddle, Jennifer
dc.contributor.authorRoerdink, Desiree
dc.contributor.authorThorseth, Ingunn Hindenes
dc.contributor.authorJørgensen, Steffen Leth
dc.date.accessioned2021-08-05T11:59:49Z
dc.date.available2021-08-05T11:59:49Z
dc.date.created2021-01-29T16:47:51Z
dc.date.issued2020
dc.identifier.issn0027-8424
dc.identifier.urihttps://hdl.handle.net/11250/2766514
dc.description.abstractNo other environment hosts as many microbial cells as the marine sedimentary biosphere. While the majority of these cells are expected to be alive, they are speculated to be persisting in a state of maintenance without net growth due to extreme starvation. Here, we report evidence for in situ growth of anaerobic ammonium-oxidizing (anammox) bacteria in ∼80,000-y-old subsurface sediments from the Arctic Mid-Ocean Ridge. The growth is confined to the nitrate–ammonium transition zone (NATZ), a widespread geochemical transition zone where most of the upward ammonium flux from deep anoxic sediments is being consumed. In this zone the anammox bacteria abundances, assessed by quantification of marker genes, consistently displayed a four order of magnitude increase relative to adjacent layers in four cores. This subsurface cell increase coincides with a markedly higher power supply driven mainly by intensified anammox reaction rates, thereby providing a quantitative link between microbial proliferation and energy availability. The reconstructed draft genome of the dominant anammox bacterium showed an index of replication (iRep) of 1.32, suggesting that 32% of this population was actively replicating. The genome belongs to a Scalindua species which we name Candidatus Scalindua sediminis, so far exclusively found in marine sediments. It has the capacity to utilize urea and cyanate and a mixotrophic lifestyle. Our results demonstrate that specific microbial groups are not only able to survive unfavorable conditions over geological timescales, but can proliferate in situ when encountering ideal conditions with significant consequences for biogeochemical nitrogen cycling.en_US
dc.language.isoengen_US
dc.publisherNational Academy of Sciencesen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleGeochemical transition zone powering microbial growth in subsurface sedimentsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 The Authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1073/pnas.2005917117
dc.identifier.cristin1882840
dc.source.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.source.pagenumber32617-32626en_US
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America. 2020, 117 (51), 32617-32626.en_US
dc.source.volume117en_US
dc.source.issue51en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal