Vis enkel innførsel

dc.contributor.authorFallahi, Shirin
dc.contributor.authorMlnaříková, Marie
dc.contributor.authorAlvord, Charlotte
dc.contributor.authorAlendal, Guttorm
dc.contributor.authorFrøysa, Håvard G
dc.contributor.authorLundh, Thorbjörn
dc.contributor.authorCelander, Malin C.
dc.date.accessioned2021-08-06T12:58:13Z
dc.date.available2021-08-06T12:58:13Z
dc.date.created2020-12-22T08:25:58Z
dc.date.issued2020
dc.identifier.issn0013-936X
dc.identifier.urihttps://hdl.handle.net/11250/2766826
dc.description.abstractToxicokinetic interactions with catabolic cytochrome P450 (CYP) enzymes can inhibit chemical elimination pathways and cause synergistic mixture effects. We have created a mathematical bottom-up model for a synergistic mixture effect where we fit a multidimensional function to a given data set using an auxiliary nonadditive approach. The toxicokinetic model is based on the data from a previous study on a fish cell line, where the CYP1A enzyme activity was measured over time after exposure to various combinations of the aromatic hydrocarbon β-naphthoflavone and the azole nocodazole. To describe the toxicokinetic mechanism in this pathway and how that affects the CYP1A biomarker, the model uses ordinary differential equations. Local sensitivity and identifiability analyses revealed that all the 10 parameters estimated in the model were identified uniquely while fitting the model to the data for measuring the CYP1A enzyme activity. The model has a good prediction power and is a promising tool to test the synergistic toxicokinetic interactions between different chemicals.en_US
dc.language.isoengen_US
dc.publisherACSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleNew Conceptual Toxicokinetic Model to Assess Synergistic Mixture Effects between the Aromatic Hydrocarbon β-Naphthoflavone and the Azole Nocodazole on the CYP1A Biomarker in a Fish Cell Lineen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 American Chemical Societyen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1021/acs.est.0c04839
dc.identifier.cristin1862554
dc.source.journalEnvironmental Science and Technologyen_US
dc.source.pagenumber13748-13758en_US
dc.relation.projectNorges forskningsråd: 248840en_US
dc.identifier.citationEnvironmental Science and Technology. 2020, 54(21), 13748-13758.en_US
dc.source.volume54en_US
dc.source.issue21en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal