Vis enkel innførsel

dc.contributor.authorKöppl, Tobias
dc.contributor.authorVidotto, Ettore
dc.contributor.authorWohlmuth, Barbara
dc.date.accessioned2021-08-06T13:29:51Z
dc.date.available2021-08-06T13:29:51Z
dc.date.created2021-02-19T21:18:41Z
dc.date.issued2020
dc.identifier.issn2040-7939
dc.identifier.urihttps://hdl.handle.net/11250/2766831
dc.description.abstractIn this work, we introduce an algorithmic approach to generate microvascular networks starting from larger vessels that can be reconstructed without noticeable segmentation errors. Contrary to larger vessels, the reconstruction of fine-scale components of microvascular networks shows significant segmentation errors, and an accurate mapping is time and cost intense. Thus there is a need for fast and reliable reconstruction algorithms yielding surrogate networks having similar stochastic properties as the original ones. The microvascular networks are constructed in a marching way by adding vessels to the outlets of the vascular tree from the previous step. To optimise the structure of the vascular trees, we use Murray's law to determine the radii of the vessels and bifurcation angles. In each step, we compute the local gradient of the partial pressure of oxygen and adapt the orientation of the new vessels to this gradient. At the same time, we use the partial pressure of oxygen to check whether the considered tissue block is supplied sufficiently with oxygen. Computing the partial pressure of oxygen, we use a 3D-1D coupled model for blood flow and oxygen transport. To decrease the complexity of a fully coupled 3D model, we reduce the blood vessel network to a 1D graph structure and use a bi-directional coupling with the tissue which is described by a 3D homogeneous porous medium. The resulting surrogate networks are analysed with respect to morphological and physiological aspects.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleA 3D-1D coupled blood flow and oxygen transport model to generate microvascular networksen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 The Authorsen_US
dc.source.articlenumbere3386en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1002/cnm.3386
dc.identifier.cristin1891948
dc.source.journalInternational Journal for Numerical Methods in Biomedical Engineeringen_US
dc.identifier.citationInternational Journal for Numerical Methods in Biomedical Engineering. 2020, 36 (10), e3386.en_US
dc.source.volume36en_US
dc.source.issue10en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal