Vis enkel innførsel

dc.contributor.authorMüller, Oliver
dc.contributor.authorSeuthe, Lena
dc.contributor.authorPree, Bernadette
dc.contributor.authorBratbak, Gunnar
dc.contributor.authorLarsen, Aud
dc.contributor.authorPaulsen, Maria Lund
dc.date.accessioned2021-12-10T10:53:31Z
dc.date.available2021-12-10T10:53:31Z
dc.date.created2021-11-26T15:38:04Z
dc.date.issued2021-11-17
dc.identifier.issn2076-2607
dc.identifier.urihttps://hdl.handle.net/11250/2833751
dc.description.abstractIn the Arctic, seasonal changes are substantial, and as a result, the marine bacterial community composition and functions differ greatly between the dark winter and light-intensive summer. While light availability is, overall, the external driver of the seasonal changes, several internal biological interactions structure the bacterial community during shorter timescales. These include specific phytoplankton–bacteria associations, viral infections and other top-down controls. Here, we uncover these microbial interactions and their effects on the bacterial community composition during a full annual cycle by manipulating the microbial food web using size fractionation. The most profound community changes were detected during the spring, with ‘mutualistic phytoplankton’—Gammaproteobacteria interactions dominating in the pre-bloom phase and ‘substrate-dependent phytoplankton’—Flavobacteria interactions during blooming conditions. Bacterivores had an overall limited effect on the bacterial community composition most of the year. However, in the late summer, grazing was the main factor shaping the community composition and transferring carbon to higher trophic levels. Identifying these small-scale interactions improves our understanding of the Arctic marine microbial food web and its dynamics. View Full-Texten_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHow microbial food web interactions shape the arctic ocean bacterial community revealed by size fractionation experimentsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 the authorsen_US
dc.source.articlenumber2378en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3390/microorganisms9112378
dc.identifier.cristin1959920
dc.source.journalMicroorganismsen_US
dc.relation.projectNorges forskningsråd: 276730en_US
dc.relation.projectNorges forskningsråd: 280292en_US
dc.relation.projectNorges forskningsråd: 280414en_US
dc.relation.projectNorges forskningsråd: 225956en_US
dc.relation.projectNorges forskningsråd: 226415en_US
dc.identifier.citationMicroorganisms. 2021, 9 (11), 2378.en_US
dc.source.volume9en_US
dc.source.issue11en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal