Sensitivity of Air-Sea Heat Exchange in Cold-Air Outbreaks to Model Resolution and Sea-Ice Distribution
Journal article, Peer reviewed
Published version
Åpne
Permanent lenke
https://hdl.handle.net/11250/2986668Utgivelsesdato
2021Metadata
Vis full innførselSamlinger
- Geophysical Institute [1268]
- Registrations from Cristin [10818]
Originalversjon
Journal of Geophysical Research: Atmospheres. 2021, 126 (5), e2020JD033610. 10.1029/2020JD033610Sammendrag
Modeling air-sea interactions during cold air outbreaks poses a major challenge because of the vast range of scales and physical processes involved. Using the Polar WRF model, we investigate the sensitivity of downstream air mass properties to (a) model resolution, (b) the sharpness of the marginal-ice zone (MIZ), and (c) the geometry of the sea ice edge. The resolved sharpness of the MIZ strongly affects peak heat fluxes and the atmospheric water cycle. For sharper MIZs, roll convection is initiated closer to the sea ice edge, increasing both evaporation and precipitation. This yields an increased heat transfer into the atmosphere while the net effect on the atmospheric moisture budget is small. Overall, higher atmospheric resolution increases both the peak and net heat extracted from the ocean. The geometry of the sea ice edge can induce convergence or divergence zones that affect the air-sea exchange.