Functional inequalities on path space of sub-Riemannian manifolds and applications
Journal article, Peer reviewed
Published version

View/ Open
Date
2021Metadata
Show full item recordCollections
- Department of Mathematics [1001]
- Registrations from Cristin [11745]
Abstract
We consider the path space of a manifold with a measure induced by a stochastic flow with an infinitesimal generator that is hypoelliptic, but not elliptic. These generators can be seen as sub-Laplacians of a sub-Riemannian structure with a chosen complement. We introduce a concept of gradient for cylindrical functionals on path space in such a way that the gradient operators are closable in . With this structure in place, we show that a bound on horizontal Ricci curvature is equivalent to several inequalities for functions on path space, such as a gradient inequality, log-Sobolev inequality and Poincaré inequality. As a consequence, we also obtain a bound for the spectral gap of the Ornstein–Uhlenbeck operator.