Vis enkel innførsel

dc.contributor.authorSchevenhoven, Francine Janneke
dc.contributor.authorCarrassi, Alberto
dc.date.accessioned2022-10-05T06:44:37Z
dc.date.available2022-10-05T06:44:37Z
dc.date.created2022-08-25T15:49:02Z
dc.date.issued2022
dc.identifier.issn1991-959X
dc.identifier.urihttps://hdl.handle.net/11250/3023844
dc.description.abstractAs an alternative to using the standard multi-model ensemble (MME) approach to combine the output of different models to improve prediction skill, models can also be combined dynamically to form a so-called supermodel. The supermodel approach enables a quicker correction of the model errors. In this study we connect different versions of SPEEDO, a global atmosphere-ocean-land model of intermediate complexity, into a supermodel. We focus on a weighted supermodel, in which the supermodel state is a weighted superposition of different imperfect model states. The estimation, “the training”, of the optimal weights of this combination is a critical aspect in the construction of a supermodel. In our previous works two algorithms were developed: (i) cross pollination in time (CPT)-based technique and (ii) a synchronization-based learning rule (synch rule). Those algorithms have so far been applied under the assumption of complete and noise-free observations. Here we go beyond and consider the more realistic case of noisy data that do not cover the full system's state and are not taken at each model's computational time step. We revise the training methods to cope with this observational scenario, while still being able to estimate accurate weights. In the synch rule an additional term is introduced to maintain physical balances, while in CPT nudging terms are added to let the models stay closer to the observations during training. Furthermore, we propose a novel formulation of the CPT method allowing the weights to be negative. This makes it possible for CPT to deal with cases in which the individual model biases have the same sign, a situation that hampers constructing a skillfully weighted supermodel based on positive weights. With these developments, both CPT and the synch rule have been made suitable to train a supermodel consisting of state of the art weather and climate models.en_US
dc.language.isoengen_US
dc.publisherCopernicusen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTraining a supermodel with noisy and sparse observations: A case study with CPT and the synch rule on SPEEDO-v.1en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.5194/gmd-15-3831-2022
dc.identifier.cristin2046139
dc.source.journalGeoscientific Model Developmenten_US
dc.source.pagenumber3831-3844en_US
dc.identifier.citationGeoscientific Model Development. 2022, 15 (9), 3831-3844.en_US
dc.source.volume15en_US
dc.source.issue9en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal