Vis enkel innførsel

dc.contributor.authorMoutoussamy, Emmanuel Edouard
dc.contributor.authorKhan, Hanif Muhammad
dc.contributor.authorRoberts, Mary B
dc.contributor.authorGershenson, Anne
dc.contributor.authorChipot, Christophe
dc.contributor.authorReuter, Nathalie
dc.date.accessioned2023-01-16T15:11:58Z
dc.date.available2023-01-16T15:11:58Z
dc.date.created2023-01-04T20:36:01Z
dc.date.issued2022
dc.identifier.issn1549-9596
dc.identifier.urihttps://hdl.handle.net/11250/3043803
dc.description.abstractPeripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein–ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein–membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of −8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (−6.6 ± 0.2 kcal/mol). In light of the 2.3-μs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleStandard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase Cen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doi10.1021/acs.jcim.1c01543
dc.identifier.cristin2100934
dc.source.journalJournal of Chemical Information and Modelingen_US
dc.source.pagenumber6602-6613en_US
dc.relation.projectSigma2: NN4700Ken_US
dc.relation.projectNorges forskningsråd: 288008en_US
dc.relation.projectNorges forskningsråd: 251247en_US
dc.identifier.citationJournal of Chemical Information and Modeling. 2022, 62 (24), 6602-6613.en_US
dc.source.volume62en_US
dc.source.issue24en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal