dc.contributor.author | Almousa, Ayah | |
dc.contributor.author | Fløystad, Gunnar | |
dc.contributor.author | Lohne, Henning | |
dc.date.accessioned | 2023-04-03T11:21:37Z | |
dc.date.available | 2023-04-03T11:21:37Z | |
dc.date.created | 2022-01-24T09:13:00Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.uri | https://hdl.handle.net/11250/3061788 | |
dc.description.abstract | We give a complete combinatorial characterization of all possible polarizations of powers of the graded maximal ideal (x1, x2, . . . , xm) n of a polynomial ring in m variables. We also give a combinatorial description of the Alexander duals of such polarizations. In the three variable case m = 3 and also in the power two case n = 2 the descriptions are easily visualized and we show that every polarization defines a (shellable) simplicial ball. We give conjectures relating to topological properties and to algebraic geometry, in particular that any polarization of an Artinian monomial ideal defines a simplicial ball. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.no | * |
dc.title | Polarizations of powers of graded maximal ideals | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | acceptedVersion | en_US |
dc.rights.holder | Copyright 2021 Elsevier | en_US |
dc.source.articlenumber | 106924 | en_US |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.1016/j.jpaa.2021.106924 | |
dc.identifier.cristin | 1988229 | |
dc.source.journal | Journal of Pure and Applied Algebra | en_US |
dc.identifier.citation | Journal of Pure and Applied Algebra. 2022, 226 (5), 106924. | en_US |
dc.source.volume | 226 | en_US |
dc.source.issue | 5 | en_US |