Vis enkel innførsel

dc.contributor.authorHahn, Cedric Jasper
dc.contributor.authorLaso-Pérez, Rafael
dc.contributor.authorVulcano, Francesca
dc.contributor.authorVaziourakis, Konstantinos-Marios
dc.contributor.authorStokke, Runar
dc.contributor.authorSteen, Ida Helene
dc.contributor.authorTeske, Andreas
dc.contributor.authorBoetius, Antje
dc.contributor.authorLiebeke, Manuel
dc.contributor.authorAmann, Rudolf
dc.contributor.authorKnittel, Katrin
dc.contributor.authorWegener, Gunter
dc.date.accessioned2023-04-12T07:02:56Z
dc.date.available2023-04-12T07:02:56Z
dc.date.created2021-03-19T12:18:24Z
dc.date.issued2020
dc.identifier.issn2161-2129
dc.identifier.urihttps://hdl.handle.net/11250/3062501
dc.description.abstractCold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, “Candidatus Ethanoperedens thermophilum” (GoM-Arc1 clade), and its partner bacterium “Candidatus Desulfofervidus auxilii,” previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of “Ca. Ethanoperedens,” a sister genus of the recently reported ethane oxidizer “Candidatus Argoarchaeum.” The metagenome-assembled genome of “Ca. Ethanoperedens” encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in “Ca. Ethanoperedens” is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.en_US
dc.language.isoengen_US
dc.publisherAmerican Society for Microbiologyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.title“Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethaneen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 the authorsen_US
dc.source.articlenumbere00600-20en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1128/mBio.00600-20
dc.identifier.cristin1899281
dc.source.journalmBioen_US
dc.identifier.citationmBio. 2020, 11 (2), e00600-20.en_US
dc.source.volume11en_US
dc.source.issue2en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal