Vis enkel innførsel

dc.contributor.authorHarrison, Cheryl S.
dc.contributor.authorRohr, Tyler
dc.contributor.authorDuVivier, Alice
dc.contributor.authorMaroon, Elizabeth A.
dc.contributor.authorBachman, Scott
dc.contributor.authorBardeen, Charles G.
dc.contributor.authorCoupe, Joshua
dc.contributor.authorGarza, Victoria
dc.contributor.authorHeneghan, Ryan
dc.contributor.authorLovenduski, Nicole S.
dc.contributor.authorNeubauer, Philipp
dc.contributor.authorRangel, Victor
dc.contributor.authorRobock, Alan
dc.contributor.authorScherrer, Kim Josefin Niklasdotter
dc.contributor.authorStevenson, Samantha
dc.contributor.authorToon, Owen B.
dc.date.accessioned2023-04-17T13:08:18Z
dc.date.available2023-04-17T13:08:18Z
dc.date.created2022-11-08T09:42:10Z
dc.date.issued2022
dc.identifier.issn2576-604X
dc.identifier.urihttps://hdl.handle.net/11250/3063383
dc.description.abstractNuclear war would produce dire global consequences for humans and our environment. We simulated climate impacts of US-Russia and India-Pakistan nuclear wars in an Earth System Model, here, we report on the ocean impacts. Like volcanic eruptions and large forest fires, firestorms from nuclear war would transport light-blocking aerosols to the stratosphere, resulting in global cooling. The ocean responds over two timescales: a rapid cooling event and a long recovery, indicating a hysteresis response of the ocean to global cooling. Surface cooling drives sea ice expansion, enhanced meridional overturning, and intensified ocean vertical mixing that is expanded, deeper, and longer lasting. Phytoplankton production and community structure are highly modified by perturbations to light, temperature, and nutrients, resulting in initial decimation of production, especially at high latitudes. A new physical and biogeochemical ocean state results, characterized by shallower pycnoclines, thermoclines, and nutriclines, ventilated deep water masses, and thicker Arctic sea ice. Persistent changes in nutrient limitation drive a shift in phytoplankton community structure, resulting in increased diatom populations, which in turn increase iron scavenging and iron limitation, especially at high latitudes. In the largest US-Russia scenario (150 Tg), ocean recovery is likely on the order of decades at the surface and hundreds of years at depth, while changes to Arctic sea-ice will likely last thousands of years, effectively a “Nuclear Little Ice Age.” Marine ecosystems would be highly disrupted by both the initial perturbation and in the new ocean state, resulting in long-term, global impacts to ecosystem services such as fisheries.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleA New Ocean State After Nuclear Waren_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumbere2021AV000610en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1029/2021AV000610
dc.identifier.cristin2070371
dc.source.journalAGU Advancesen_US
dc.relation.projectEC/H2020/682602en_US
dc.identifier.citationAGU Advances. 2022, 3 (4), e2021AV000610.en_US
dc.source.volume3en_US
dc.source.issue4en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal