Generative språkmodeller for automatisert tekstforenkling: Tilpasning av nyhetsartikler for lesbarhet hos personer med dysleksi
Master thesis
Permanent lenke
https://hdl.handle.net/11250/3072352Utgivelsesdato
2023-06-02Metadata
Vis full innførselSamlinger
- Master theses [246]
Sammendrag
I denne masteroppgaven utforskes utviklingen av en prototype for automatisert tekstforenkling med fokus på tilpasning av nyhetsartikler for personer med dysleksi. Prosjektet involverer flere iterasjoner for å finne den mest effektive tilnærmingen for å forenkle tekstene ved hjelp av generative språkmodeller. Prototypen inneholder tre nivåer av forenklet tekst, der nivå null representerer den originale teksten og nivå en til tre gradvis forenkler innholdet. Testing og evaluering av prototypen gjennomføres ved å utføre brukertester med målgruppen og samle tilbakemeldinger fra eksperter innen feltet. Disse tilbakemeldingene er verdifulle i forbedringen av prototypen og tekstforenklingen. En viktig del av arbeidet er eksperimentering med ulike prompts og instruksjoner for å finne den mest effektive måten å be språkmodellen forenkle artiklene på. Observeringer indikerer at formuleringen av promptene har en innvirkning på resultatene, og at det er utfordringer knyttet til språket i de genererte versjonene. Dette vil kreve manuell redigering av tekstene for å oppnå ønsket lesbarhet og kvalitet. Funnene indikerer at språkmodellen fortsatt har begrensninger når det gjelder å generere grammatisk korrekte setninger og å velge passende ord i konteksten ved omformulering av en eksisterende tekst. Videre identifiseres utfordringer knyttet til maksgrensen for tokens, som begrenser promptlengden, artikkellengden og den forenklede teksten. Det er viktig å påpeke at denne forskningen blir gjennomført innenfor de nåværende rammene for språkmodeller for å teste reformulering av norske nyhetsartikler. Med fremtidig utvikling av språkmodeller og økende tokenkapasitet, samt inkorporering av retningslinjer for klarspråk direkte i modellene, kan vi forvente ytterligere forbedringer i automatisert tekstforenkling.