Vis enkel innførsel

dc.contributor.authorSvingen, Kristin
dc.contributor.authorBrakstad, Ailin
dc.contributor.authorVåge, Kjetil
dc.contributor.authorVon Appen, Wilken-Jon
dc.contributor.authorPapritz, Lukas
dc.date.accessioned2023-08-15T08:36:00Z
dc.date.available2023-08-15T08:36:00Z
dc.date.created2023-07-13T11:35:12Z
dc.date.issued2023
dc.identifier.issn0022-3670
dc.identifier.urihttps://hdl.handle.net/11250/3084031
dc.description.abstractThe Greenland Sea produces a significant portion of the dense water from the Nordic seas that supplies the lower limb of the Atlantic meridional overturning circulation. Here, we use a continuous 10-yr hydrographic record from moored profilers to examine dense-water formation in the central Greenland Sea between 1999 and 2009. Of primary importance for dense-water formation is air–sea heat exchange, and 60%–80% of the heat lost to the atmosphere during winter occurs during intense, short-lived events called cold-air outbreaks (CAOs). The long duration and high temporal resolution of the moored record has for the first time facilitated a statistical quantification of the direct impact of CAOs on the wintertime mixed layer in the Greenland Sea. The mixed layer development can be divided into two phases: a cooling phase and a deepening phase. During the cooling phase (typically between November and January), CAOs cooled the mixed layer by up to 0.08 K day−1, depending on the intensity of the events, while the mixed layer depth remained nearly constant. Later in winter (February–April), heat fluxes during CAOs primarily led to mixed layer deepening of up to 38 m day−1. Considerable variability was observed in the mixed layer response, indicating that lateral fluxes of heat and salt were also important. The magnitude and vertical distributions of these fluxes were quantified, and idealized mixed layer simulations suggest that their combined effect is a reduction in the mixed layer depth at the end of winter of up to several hundred meters.en_US
dc.language.isoengen_US
dc.publisherAMSen_US
dc.titleThe Impact of Cold-Air Outbreaks and Oceanic Lateral Fluxes on Dense-Water Formation in the Greenland Sea from a 10-Year Moored Record (1999–2009)en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 American Meteorological Societyen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1175/JPO-D-22-0160.1
dc.identifier.cristin2162224
dc.source.journalJournal of Physical Oceanographyen_US
dc.source.pagenumber1499-1517en_US
dc.identifier.citationJournal of Physical Oceanography. 2023, 53 (6), 1499-1517.en_US
dc.source.volume53en_US
dc.source.issue6en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel