Show simple item record

dc.contributor.authorEychenne, Arnaud
dc.contributor.authorValet, Frederic Fernand Jacques
dc.date.accessioned2023-08-28T12:31:33Z
dc.date.available2023-08-28T12:31:33Z
dc.date.created2023-06-27T14:32:17Z
dc.date.issued2023
dc.identifier.issn0022-0396
dc.identifier.urihttps://hdl.handle.net/11250/3086025
dc.description.abstractWe study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1- dimensional semi-linear fractional equations: |D|αu + u − f (u) = 0, with α ∈ (0, 2), a prescribed coefficient p∗(α), and a non-linearity f (u) = |u|p−1 u for p ∈ (1,p∗(α)), or f (u) = up with an integer p ∈ [2;p∗(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDecay of solitary waves of fractional Korteweg-de Vries type equationsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1016/j.jde.2023.03.012
dc.identifier.cristin2158755
dc.source.journalJournal of Differential Equationsen_US
dc.source.pagenumber243-274en_US
dc.identifier.citationJournal of Differential Equations. 2023, 363, 243-274.en_US
dc.source.volume363en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal