dc.contributor.author | Eychenne, Arnaud | |
dc.contributor.author | Valet, Frederic Fernand Jacques | |
dc.date.accessioned | 2023-08-28T12:31:33Z | |
dc.date.available | 2023-08-28T12:31:33Z | |
dc.date.created | 2023-06-27T14:32:17Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.uri | https://hdl.handle.net/11250/3086025 | |
dc.description.abstract | We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1- dimensional semi-linear fractional equations: |D|αu + u − f (u) = 0, with α ∈ (0, 2), a prescribed coefficient p∗(α), and a non-linearity f (u) = |u|p−1 u for p ∈ (1,p∗(α)), or f (u) = up with an integer p ∈ [2;p∗(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | Decay of solitary waves of fractional Korteweg-de Vries type equations | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 2 | |
dc.identifier.doi | 10.1016/j.jde.2023.03.012 | |
dc.identifier.cristin | 2158755 | |
dc.source.journal | Journal of Differential Equations | en_US |
dc.source.pagenumber | 243-274 | en_US |
dc.identifier.citation | Journal of Differential Equations. 2023, 363, 243-274. | en_US |
dc.source.volume | 363 | en_US |