Show simple item record

dc.contributor.authorOskarsdotter, Kristin
dc.contributor.authorNordgård, Catherine Taylor
dc.contributor.authorApelgren, Peter
dc.contributor.authorSäljö, Karin
dc.contributor.authorSolbu, Anita Akbarzadeh
dc.contributor.authorEliasson, Edwin
dc.contributor.authorSämfors, Sanna
dc.contributor.authorSætrang, Henriette Elisabeth Myhr
dc.contributor.authorAsdahl, Lise Cathrine
dc.contributor.authorThompson, Eric Malcolm
dc.contributor.authorTroedsson, Christofer
dc.contributor.authorSimonsson, Stina
dc.contributor.authorStrand, Berit Løkensgard
dc.contributor.authorGatenholm, Paul
dc.contributor.authorKölby, Lars
dc.date.accessioned2024-04-19T11:52:31Z
dc.date.available2024-04-19T11:52:31Z
dc.date.created2023-11-10T10:09:49Z
dc.date.issued2023
dc.identifier.issn2310-2861
dc.identifier.urihttps://hdl.handle.net/11250/3127447
dc.description.abstractAutologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInjectable In Situ Crosslinking Hydrogel for Autologous Fat Graftingen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.source.articlenumber813en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3390/gels9100813
dc.identifier.cristin2194947
dc.source.journalGelsen_US
dc.identifier.citationGels. 2023, 9 (10), 813.en_US
dc.source.volume9en_US
dc.source.issue10en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal