Vis enkel innførsel

dc.contributor.authorMartín-Zamora, Francisco M.
dc.contributor.authorLiang, Yan
dc.contributor.authorGuynes, Kero
dc.contributor.authorCarrillo-Baltodano, Allan M.
dc.contributor.authorDavies, Billie E.
dc.contributor.authorDonnellan, Rory D.
dc.contributor.authorTan, Yongkai
dc.contributor.authorMoggioli, Giacomo
dc.contributor.authorSeudre, Océane
dc.contributor.authorTran, Martin
dc.contributor.authorMortimer, Kate
dc.contributor.authorLuscombe, Nicholas M.
dc.contributor.authorHejnol, Andreas Helmut
dc.contributor.authorMarlétaz, Ferdinand
dc.contributor.authorMartin-Duran, José M.
dc.date.accessioned2024-08-30T10:37:33Z
dc.date.available2024-08-30T10:37:33Z
dc.date.created2023-02-10T13:41:01Z
dc.date.issued2023
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/11250/3149291
dc.description.abstractIndirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2,3,4,5,6,7,8,9,10,11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called ‘head larvae’ of other bilaterians13,14,15,16,17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.en_US
dc.language.isoengen_US
dc.publisherNatureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAnnelid functional genomics reveal the origins of bilaterian life cyclesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1038/s41586-022-05636-7
dc.identifier.cristin2124983
dc.source.journalNatureen_US
dc.source.pagenumber105-110en_US
dc.identifier.citationNature. 2023, 615 (7950), 105-110.en_US
dc.source.volume615en_US
dc.source.issue7950en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal