An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic n termini of transmembrane proteins and maintains golgi integrity
Aksnes, Henriette; Van Damme, Petra; Goris, Marianne; Starheim, Kristian K.; Marie, Michael Bruno Eric; Støve, Svein Isungset; Hoel, Camilla; Kalvik, Thomas Vikestad; Hole, Kristine; Glomnes, Nina; Furnes, Clemens; Ljostveit, Sonja; Ziegler, Mathias; Niere, Marc; Gevaert, Kris; Arnesen, Thomas
Peer reviewed, Journal article
Published version

View/ Open
Date
2015-02-26Metadata
Show full item recordCollections
Original version
https://doi.org/10.1016/j.celrep.2015.01.053Abstract
N-terminal acetylation is a major and vital protein modification catalyzed by N-terminal acetyltransferases (NATs). NatF, or Nα-acetyltransferase 60 (Naa60), was recently identified as a NAT in multicellular eukaryotes. Here, we find that Naa60 differs from all other known NATs by its Golgi localization. A new membrane topology assay named PROMPT and a selective membrane permeabilization assay established that Naa60 faces the cytosolic side of intracellular membranes. An Nt-acetylome analysis of NAA60-knockdown cells revealed that Naa60, as opposed to other NATs, specifically acetylates transmembrane proteins and has a preference for N termini facing the cytosol. Moreover, NAA60 knockdown causes Golgi fragmentation, indicating an important role in the maintenance of the Golgi’s structural integrity. This work identifies a NAT associated with membranous compartments and establishes N-terminal acetylation as a common modification among transmembrane proteins, a thus-far poorly characterized part of the N-terminal acetylome.