• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Medicine
  • Department of Clinical Science
  • Department of Clinical Science
  • View Item
  •   Home
  • Faculty of Medicine
  • Department of Clinical Science
  • Department of Clinical Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovery of shared genomic loci using the conditional false discovery rate approach

Smeland, Olav Bjerkehagen; Frei, Oleksandr; Shadrin, Alexey A.; O'Connell, Kevin; Fan, Chun Chieh; Bahrami, Shahram; Holland, Dominic; Djurovic, Srdjan; Thompson, Wesley Kurt; Dale, Anders; Andreassen, Ole Andreas
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
PDF (614.5Kb)
URI
https://hdl.handle.net/1956/21050
Date
2019-09-13
Metadata
Show full item record
Collections
  • Department of Clinical Science [1074]
Original version
https://doi.org/10.1007/s00439-019-02060-2
Abstract
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antagonistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights into the genetic relationship between complex phenotypes.
Description
Under embargo until 13.09.2020
Publisher
Springer Berlin Heidelberg
Journal
Human Genetics
Copyright
Copyright 2019 Springer-Verlag GmbH Germany

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit